A Comparison of GAs Penalizing Infeasible Solutions and Repairing Infeasible Solutions on the 0-1 Knapsack Problem
نویسندگان
چکیده
Constraints exist in almost every optimization problem. Different constraint handling techniques have been incorporated with genetic algorithms (GAs), however most of current studies are based on computer experiments. An example is Michalewicz’s comparison among GAs using different constraint handling techniques on the 0-1 knapsack problem. The following phenomena are observed in experiments: 1) the penalty method needs more generations to find a feasible solution to the restrictive capacity knapsack than the repair method; 2) the penalty method can find better solutions to the average capacity knapsack. Such observations need a theoretical explanation. This paper aims at providing a theoretical analysis of Michalewicz’s experiments. The main result of the paper is that GAs using the repair method are more efficient than GAs using the penalty method on both restrictive capacity and average capacity knapsack problems. This result of the average capacity is a little different from Michalewicz’s experimental results. So a supplemental experiment is implemented to support the theoretical claim. The results confirm the general principle pointed out by Coello: a better constrainthandling approach should tend to exploit specific domain knowledge.
منابع مشابه
A Genetic Algorithm Using Infeasible Solutions for Constrained Optimization Problems
The use of genetic algorithms (GAs) to solve combinatorial optimization problems often produces a population of infeasible solutions because of optimization problem constraints. A solution pool with a large number of infeasible solutions results in poor search performance of a GA, or worse, the algorithm ceases to run. In such cases, the methods of penalty function and multi-objective optimizat...
متن کاملSolving the Two Dimensional Cutting Problem using Evolutionary Algorithms with Penalty Functions
In this work a solution using evolutionary algorithms with penalty function for the non-guillotine cutting problem is presented. In this particular problem, the rectangular pieces have to be cut from an unique large object, being the goal to maximize the total value of cut pieces. Some chromosomes can hold pieces to be cut, but some pieces cannot be arranged into the object, generating infeasib...
متن کاملAnalysis of a Repair Mechanism
We study the behaviour of a (1, λ)-ES that applies a simple repair mechanism to infeasible candidate solutions for the problem of maximising a linear function with a single linear constraint. Integral expressions that describe the strategy’s one-generation behaviour are derived and used in a simple zeroth order model for the steady state of the strategy. Applied to the analysis of cumulative st...
متن کاملAn infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step
An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...
متن کاملImproved binary artificial fish swarm algorithm for the 0-1 multidimensional knapsack problems
The 0–1 multidimensional knapsack problem (MKP) arises in many fields of optimization and is NP-hard. Several exact as well as heuristic methods exist. Recently, an artificial fish swarm algorithm has been developed in continuous global optimization. The algorithm uses a population of points in space to represent the position of fish in the school. In this paper, a binary version of the artific...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008